References
Required Code Dependencies¶
- NumPy. The fundamental package for scientific computing in Python.
https://numpy.org/
Optional Code Dependencies¶
-
Matplotlib. A comprehensive library for creating static, animated, and interactive visualizations in Python.
https://matplotlib.org/ -
Bokeh. A Python library for creating interactive visualizations for modern web browsers.
https://bokeh.org/
Technical reference numbering
InertialSim follows several international, national, and industry standards. Reference numbers in the code and documentation refer to the following documents.
Standards Documents¶
-
American National Standard for Metric Practice, IEEE/ASTM SI 10, 2016.
https://doi.org/10.1109/IEEESTD.2017.7875538 -
SAE Surface Vehicle Recommended Practice - Vehicle Dynamics Terminology, SAE J670, 2022.
https://doi.org/10.4271/J670_202206 -
IEEE Standard for Inertial Sensor Terminology, IEEE 528, 2019.
https://doi.org/10.1109/IEEESTD.2019.8863799 -
IEEE Standard for Inertial Systems Terminology, IEEE 1559, 2022.
https://doi.org/10.1109/IEEESTD.2022.9961160 -
IEEE Standard for Specifying and Testing Single-Axis Interferometric Fiber Optic Gyros, IEEE 952, 2020.
https://doi.org/10.1109/IEEESTD.2021.9353434 -
IEEE Standard Specification Format Guide and Test Procedure for Linear Single-Axis, Nongyroscopic Accelerometers, IEEE 1293, 2018.
https://doi.org/10.1109/IEEESTD.2019.8653544 -
Department of Defense World Geodetic System 1984, NGA Standard NGA.STND.0036_1.0.0_WGS84, 2014.
https://nsgreg.nga.mil/doc/view?i=4085
Technical References¶
-
P. Savage, Strapdown Analytics, Parts 1 and 2, 2nd ed., Maple Plain, MN, USA: Strapdown Associates Inc., 2007.
http://www.strapdownassociates.com/ -
M. D. Shuster, "A survey of attitude representations," Journal of Astronautical Sciences, vol. 41, no. 4, pp. 439-517, Oct.-Dec., 1993.
https://malcolmdshuster.com/Doorway_Pubs-1970-1998.htm https://malcolmdshuster.com/Pub_1993h_J_Repsurv_scan.pdf -
S. W. Shepperd, "Quaternion from rotation matrix," Journal of Guidance and Control, vol. 1, no. 3, pp. 223-224, May, 1978.
https://doi.org/10.2514/3.55767b -
M. D. Shuster and F. L. Markley, "General formula for extracting the Euler angles," Journal of Guidance, Control, and Dynamics, vol. 29, no. 1, pp. 215-217, Jan.-Feb., 2006.
https://malcolmdshuster.com/Doorway_Pubs-2000-present.htm https://doi.org/10.2514/1.16622 -
R. Zanetti, "Rotations, transformations, left quaternions, right quaternions?," Journal of the Astronautical Sciences, vol. 66, no. 3, pp. 361-381, Sep., 2019.
https://doi.org/10.1007/s40295-018-00151-2 -
S. Sarabandi and F. Thomas, "A Survey on the Computation of Quaternions From Rotation Matrices," ASME Journal of Mechanisms and Robotics, vol. 11, no. 2, Apr., 2019.
https://doi.org/10.1115/1.4041889 -
G. Marsaglia, "Choosing a Point from the Surface of a Sphere," Annals of Mathematical Statistics, vol. 43, no. 2, pp. 645 - 646, Apr., 1972.
https://doi.org/10.1214/aoms/1177692644 -
M. D. Shuster, "Uniform Attitude Probability Distributions," Journal of Astronautical Sciences, vol. 51, no. 4, pp. 451-475, Dec., 2003.
https://doi.org/10.1007/BF03546294 -
K. Shoemake, "Uniform Random Rotations," in Graphics Gems III, D. Kirk, Ed., Morgan Kaufman, 1992, pp. 124-132.
https://doi.org/10.1016/B978-0-08-050755-2.50036-1 -
E. Bernardes and S. Viollet, "Quaternion to Euler angles conversion: A direct, general and computationally efficient method," PLoS ONE, vol. 17, no. 11, Nov., 2022.
https://doi.org/10.1371/journal.pone.0276302 -
https://en.wikipedia.org/wiki/Active_and_passive_transformation
-
D.I. Kolve, "Describing an Attitude," in Proceedings of the 16th Annual AAS Guidance and Control Conference, Advances in the Astronautical Sciences, vol. 81, pp. 289-393, San Diego, CA.: Univelt, 1993.
https://www.univelt.com/book=195 -
K. Shoemake, "Euler Angle Conversion," in Graphics Gems IV, P. Heckbert, Ed., Morgan Kaufman, 1994, pp. 222-229.
https://doi.org/10.1016/B978-0-12-336156-1.50030-6 -
G. S. Chirikjian, A. B. Kyatkin, "Harmonic Analysis for Engineers and Applied Scientists: Updated and Expanded Edition," Mineola, NY, USA: Dover Publications Inc., 2016.
-
G. S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results and Geometric Methods," Boston, MA, USA: Birkhauser, 2009.
https://doi.org/10.1007/978-0-8176-4803-9 -
G. S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications," Boston, MA, USA: Birkhauser, 2012.
https://doi.org/10.1007/978-0-8176-4944-9 -
T. D. Barfoot, "State Estimation for Robotics," Cambridge, UK: Cambridge University Press, 2017.
https://doi.org/10.1017/9781316671528 -
T. D. Barfoot, "State Estimation for Robotics," Draft 2nd Ed.
http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser23.pdf -
D. Eberly, "Approximations to Rotation Matrices and Their Derivatives," Redmond, Washington, USA: Geometric Tools, Aug., 2020.
https://www.geometrictools.com/Documentation/Documentation.html -
J. A. Farrell, F. O. Silva, F. Rahman and J. Wendel, "Inertial Measurement Unit Error Modeling Tutorial: Inertial Navigation System State Estimation with Real-Time Sensor Calibration," in IEEE Control Systems Magazine, vol. 42, no. 6, pp. 40-66, Dec., 2022.
https://doi.org/10.1109/MCS.2022.3209059 -
D. Titterton and J. Weston, "Strapdown Inertial Navigation Technology," 2nd Ed., Stevenage, UK: Institution of Electrical Engineers, 2004.
https://doi.org/10.1049/PBRA017E -
K. Britting, "Inertial Navigation Systems Analysis," Boston, MA, USA: Artech House, 2010.
-
B. Hofmann-Wellenhof and H. Moritz, "Physical Geodesy," Vienna, Austria: Springer-Verlag, 2005.
https://doi.org/10.1007/978-3-211-33545-1 -
B. R. Bowring, “Transformation from Spatial to Geographical Coordinates,” Survey Review, vol. 23, no. 181, pp. 323-327, July, 1976.
https://doi.org/10.1179/sre.1976.23.181.323 -
H. Vermeille, “An analytical method to transform geocentric into geodetic coordinates,” Journal of Geodesy, vol. 85, no. 2, pp. 105-117, Feb., 2011.
https://doi.org/10.1007/s00190-010-0419-x -
T. Fukushima, “Transformation from Cartesian to Geodetic Coordinates Accelerated by Halley's Method,” Journal of Geodesy, vol. 79, no. 12, pp. 689-693, Mar., 2006.
https://doi.org/10.1007/s00190-006-0023-2 -
J. A. Farrell, "Aided Navigation: GPS with High Rate Sensors," New York, NY, USA: McGraw-Hill, 2008.
-
J. Timmer and M. Konig, "On Generating Power Law Noise," Astronomy and Astrophysics, vol. 300, pp. 707-710, Aug., 1995.
-
S. Guerrier, et. al., "Wavelet-Based Moment-Matching Techniques for Inertial Sensor Calibration," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, pp. 7542-7551, Oct., 2020.
https://doi.org/10.1109/TIM.2020.2984820 -
S. Sarabandi and F. Thomas, "Solution methods to the nearest rotation matrix problem in R3: A comparative survey," Numerical Linear Algebra with Applications, vol. 30, 2023.
https://doi.org/10.1002/nla.2492 -
D. G. Murri, E. B. Jackson, and R. O. Shelton, “Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations”, NASA, NASA/TM-2015-218675/Volume II, 2015. https://ntrs.nasa.gov/citations/20150001264